Posts

Beware of loops and tasks

Loops and anonymous methods don't go hand in hand. Any variable that changes for each iteration will cause problems if it is used within an anonymous method. I explained the mechanism behind variable capturing in the post Mysterious Case Of Wrong Value , along with the problem it causes with loops and its solution. Commonly, anonymous methods are used as callbacks or event handlers, where there are no loops in the context where variable capture happens. While there is a possibility to have an unexpected—wrong—value in such scenarios, it is rather easy to debug them and understand the order in which some code is called, and why the captured value is wrong in a given place. With the rise of multi-threading usage, and especially the Parallel Programming Library and tasks, writing anonymous methods inside a loop becomes more common, and it is much easier to write code where a captured variable will have the wrong value. The biggest problem with such code is that it will be harder to

Assigning result to a function from asynchronous code

One of the more common problems that comes up in multi-threading, especially when refactoring existing code, is assigning a result obtained from asynchronous code. In other words, how do you write a function that will return some value, and calculate that value in a background thread? Basically, converting the following code: function GetData(...): string; var Data: string; begin Data := LongTask(...); // assign result of a long-running task to a function Result := Data; end; To this one: function GetData(...): string; var Data: string; begin TThread.CreateAnonymousThread( procedure begin Data := LongTask(...); end).Start; // assign result of a long-running task to a function Result := Data; end; Now, the above code will compile, but it will not achieve the desired functionality. Even if we ignore its thread safety issues (the background thread writes to the Data variable and that can interfere with assigning it to the function result), the funct

DelphiCon 2023: NX Horizon - The Open Source Event Bus for Delphi Replay

Image
 Did you miss the DelphiCon session on "NX Horizon - The Open Source Event Bus for Delphi"?  The webinar replay is now available!  Code can be found on GitHub: https://github.com/dalijap/nx-horizon Replay can be found at:  https://www.youtube.com/watch?v=axu53AatjHc

CodeRage 2022: Challenges of Multi-threaded Programming

Image
Here you can find slides from my CodeRage 2022 presentation about Challenges of Multi-threaded Programming , as well as additional links to code examples related to the presentation. Slides: https://dalija.prasnikar.info/dl/DP_CodeRage2022.pdf Additional links: Thread-safe Event Bus: https://github.com/dalijap/nx-horizon Books: Delphi Event-based and Asynchronous Programming: Code Examples: https://github.com/dalijap/code-delphi-async Book: https://dalija.prasnikar.info/delphiebap/ Delphi Thread Safety Patterns: Code Examples: https://github.com/dalijap/code-delphi-thread-safety Book: https://dalija.prasnikar.info/delphitspatt/ Delphi Memory Management: Code Examples: https://github.com/dalijap/code-delphi-mm Book: https://dalija.prasnikar.info/delphimm/ Replay of the presentation can be found at:  https://www.youtube.com/watch?v=d4QTRXVj8mg

Zeroing Weak Object References

In the two-part post series, The purpose of weak references - Part I and The purpose of weak references - Part II , I wrote about the purpose of weak references in automatic reference counting, as well as in manual memory management, where they are commonly referred to as non-owning references. In ARC, object references to reference-counted objects are unsafe, non-zeroing weak references, and in manual memory management, non-owning references to an object instance are also unsafe. Unsafe, in the above context, means that you can safely use such references only if the object instance they point to always has a longer lifetime than the unsafe reference, or that there is additional mechanism (code) that will notify you when the object is destroyed, so you know the reference is not pointing to a valid object anymore. In manual memory management, TComponent implements such a notification mechanism. However, there are two downsides: first, it only works with TComponent descendants; and

The purpose of weak references - Part II

Image
In the first part of this post series, I covered owning and non-owning references under manual memory management, and the purpose of non-owning (weak) references in that memory model. Following the same use cases, we can now clearly show the purpose of their counterparts under the automatic reference counting memory model. Automatic reference counting Automatic reference counting is a memory model under which an object instance will be valid as long as there is at least one strong reference to that object instance. When the last strong reference goes out of scope or is nilled, the object's reference count will drop to zero, and the instance will be automatically destroyed. One of the side-effects of that design is that two object instances that are no longer reachable through any outside references can hold strong references to each other, thus keeping themselves alive and creating memory leaks. This is called a reference cycle. To prevent problems with reference cycles, ARC h

The purpose of weak references - Part I

Image
The terminology "weak and strong references" is commonly used in the context of automatic reference counting. In the context of manual memory management, we talk about ownership, and owning and non-owning references. While the terminology is different, those two different kinds of references represent the same concept, regardless of the underlying memory management model. Strong references are the equivalent of owning references, and weak references are the equivalent of non-owning references. Understanding those relations can help us understand the purpose of weak references in automatic reference counting, and instead of thinking about them merely in the context of breaking reference cycles, we should think about them as non-owning references—in other words, additional references to an object instance that don't participate in its memory management, and could be invalidated after the object is released through other code and owning references. Because non-owning (wea